Antioxidant content of carrots with different pigments grown in Ontario, Canada.

Chanli Hu*1,2, Rong Tsao1, and Mary Ruth McDonald2,

1Guelph Food Research Centre, AAFC, 93 Stone Road West, Guelph, Ontario, N1G 5C9.
2Department of Plant Agriculture, University of Guelph, Guelph, 50 Stone Road East, Ontario, N1G 2W.

INTRODUCTION

Vegetable crops, including carrots, are rich in phytochemicals and always an important part of a healthy diet. Epidemiological studies have consistently shown a strong link between antioxidant-rich diets and incidence of chronic diseases such as cancer and cardiovascular diseases. Anthocyanins, one of the major groups of flavonoids, are responsible for the blue, purple, red and pink colors in vegetables and fruits. Some health beneficial effects associated with anthocyanins include prevention of cancers [1] and lowering the risk of cardiovascular disease [2]. Different from the well known small berry fruits, anthocyanin rich vegetables have not been extensively studied. Carrots with different pigments and colours are have been commercially available for a few years (Fig. 1), and sometimes are available as an assortment of colours, such as the “Heirloom Collection” from Carron Farms in Ontario, Canada (Fig. 2).

In this study, total phenolic content and antioxidant capacity of five carrot cultivars and five breeding lines from the USDA/ARS carrot breeding program at the Univ. of Wisconsin were evaluated as a step in the selection and development of antioxidant-rich cultivars with enhanced human health and nutritional benefits. The antioxidant levels were compared to those in potatoes and published data on blueberries (Table 1).

MATERIALS & METHODS

Carrot cultivars were: Purple Rain (purple, Bejo), Atomic Red (red, Johnny's Select Seeds), Envy (orange, Seminis) Mello Yello (yellow, Bejo) and Crème de Lile (white Nunheims). These were compared to breeding lines from the USDA/ARS carrot breeding program of Dr. Phil Simon.

Carrots were grown on muck soils in the Holland/Bradford Marsh (pH 6.7, 48% organic matter), harvested 7 Nov., 2008 and placed in cold storage (2°C, 95% rh) for 20 weeks prior to assessment.

Total Phenolic Content (TPC). A modified Folin-Ciocalteu (FC) Reagent Method [3] was used for the analysis of total phenolic content in extracts. Results were expressed as microgram of gallic acid equivalent (GAE) per gram of dry weight.

Antioxidant capacity. Ferric reducing/antioxidant power (FRAP) Assay [4] was used to determine the antioxidant potential in selected vegetable cultivars. The FRAP values were expressed as micromole ascorbic acid equivalent (AAE) per gram of dry weight.

REFERENCES

RESULTS & DISCUSSION

Differences in the total phenolics and antioxidant capacity of the carrot extracts were identified. These ranged from 0.46 to 2.06 mg GAE/g carrot dry weight (Fig.3).

The cultivar Purple Rain had significantly higher total phenolic content and total antioxidant content than all other coloured carrots, except the breeding line Red-104-3.

Differences were found for TPC and TAC when the carrots were grouped according to colour. (Fig.4.) A positive linear correlation was found between TPC and TAC values ($R^2 = 0.9017$). The anthocyanin pigments in the purple carrots may be responsible for the higher TPC and FRAP values.

Total Phenolic & Total Antioxidant Activity of Color Carrots

CONCLUSIONS

- There were greater differences in total phenol content than antioxidant content among carrots with different pigments.
- Purple coloured carrots, rich in anthocyanins, are a good source of antioxidants, and can potentially be developed as functional foods.
- Purple carrots are an economical source of antioxidants in the diet.

Table 1. Cost comparison of total phenol content and total antioxidant content of purple carrots, potatoes and blueberries

<table>
<thead>
<tr>
<th></th>
<th>Purple carrot</th>
<th>Purple potato</th>
<th>Blueberry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serving size</td>
<td>128 g</td>
<td>112 g</td>
<td>145 g</td>
</tr>
<tr>
<td>Moisture</td>
<td>87%</td>
<td>79%</td>
<td>85%</td>
</tr>
<tr>
<td>Total Phenolic</td>
<td>35 mg</td>
<td>85 mg</td>
<td>435 mg</td>
</tr>
<tr>
<td>Total Antioxidant</td>
<td>56 umol</td>
<td>1505 umol</td>
<td>1486 umol</td>
</tr>
<tr>
<td>Price</td>
<td>$0.14*</td>
<td>$ 0.4*</td>
<td>$ 2.5</td>
</tr>
</tbody>
</table>

*Total phenol content expressed as mg/g total phenol and expressed (GAE) per gram dry weight.

ACKNOWLEDGMENT

Funding was provided by the Ontario Ministry of Agriculture, Food and Rural Affairs/University of Guelph Sustainable Production Systems Program.