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Fig. 1. ABySS-Explorer employs a novel graph representation enabling biologists to examine the global structure of a genome
sequence assembly.

Abstract—One bottleneck in large-scale genome sequencing projects is reconstructing the full genome sequence from the short sub-
sequences produced by current technologies. The final stages of the genome assembly process inevitably require manual inspection
of data inconsistencies and could be greatly aided by visualization. This paper presents our design decisions in translating key data
features identified through discussions with analysts into a concise visual encoding. Current visualization tools in this domain focus
on local sequence errors making high-level inspection of the assembly difficult if not impossible. We present a novel interactive graph
display, ABySS-Explorer, that emphasizes the global assembly structure while also integrating salient data features such as sequence
length. Our tool replaces manual and in some cases pen-and-paper based analysis tasks, and we discuss how user feedback was
incorporated into iterative design refinements. Finally, we touch on applications of this representation not initially considered in our
design phase, suggesting the generality of this encoding for DNA sequence data.

Index Terms—Bioinformatics visualization, design study, DNA sequence, genome assembly.

1 INTRODUCTION

Data generation used to be the expensive and time consuming step in
biology research. Recent innovations in high-throughput techniques
have transformed it into a cost-effective and rapid process, pushing the
bottleneck of discovery into the analysis phase. There is increasing
recognition in the field that improvements in visualization tools will
be essential for understanding our growing wealth of data. This paper
presents one such tool for a genome analysis problem.

The term “genome” refers to the genetic material of a cell and can
be thought of as the cellular instruction set. A genome consists of
one or more individual chromosomes. Each chromosome contains de-
oxyribonucleic acid (DNA), or in some cases, such as for many virus
genomes, is made from a closely related molecule called ribonucleic
acid (RNA). DNA molecules are built from simple units called nu-
cleotides (nt) which come in four common types abbreviated A, C,
G, and T. DNA molecules have an inherent directionality, and for
chemical reasons the start and end of a molecule are referred to the
5′ and 3′ ends respectively. DNA sequencing is the process of deduc-
ing the order of nucleotides from a cell population and encoding them
as a string of letters. Although it remains an active research pursuit,
current DNA sequencing technology is incapable of reading a chro-
mosome sequence continuously from one end to another. Instead, a
shotgun sequencing approach first breaks DNA molecules into small
fragments which are then used as templates in a chemical reaction to
produce short sub-sequences called reads. One major challenge con-
sists of reassembling the original genome sequence from these short
reads. Genome assembly algorithms have been developed to tackle
this problem, however for a number of technical and biological reasons
the resulting assembled sequence is imperfect. A genome assembly is

• Cydney B. Nielsen, Shaun D. Jackman, Inanç Birol, and Steven J.M. Jones
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subjected to many rounds of automated improvement, but ultimately it
is visually inspected and manually edited by specialists.

Our work was motivated by the needs of genome analysts and the
shortcomings of existing visualization tools in this domain. A genome
assembly consists of long contiguous sequences, called contigs, as-
sembled from short sequencing reads. An analyst integrates diverse
data types used by the assembly algorithm together with external meta-
data to make final judgements about whether an assembly is correct
and complete. It is useful to interpret these data in the context of the
global assembly structure, however most current visualization tools
tend to focus on local errors. Figure 2 gives an example of how such
structure can arise. During the assembly process, contigs may termi-
nate when no additional reads overlap at their termini or when there
are ambiguities in how the extension should occur. For example, the
length of a repetitive sequence, such as a run of As, cannot be resolved
if it is longer than the read length. There is simply no read that can
traverse the repeat. Some reads may contain a run of As at their start
(5′) or end (3′) depending on their orientation relative to the repeat. If
the repeat occurs in many instances in the genome, then it becomes
impossible to determine which pairs of reads flanking the repeat be-
long together based on read sequence alone and the true path between
contigs is ambiguous. For each one of these contigs, the assembly al-
gorithm will report several possible neighbour contigs. Depending on
the frequency of repetitive elements in the genome and the read length,
the connectivity of contigs within an assembly can become quite com-
plex. It can be challenging for an analyst to understand the structure
of an assembly as a whole using current tools even though such global
features may be relevant in resolving ambiguities. At times, analysts
resort to time-consuming manual rendering of the scenario using pen
and paper.

We present an interactive visualization tool to explore the structure
of genome sequence assemblies. Our novel graph representation (Fig-
ure 1) highlights the connectivity between contig sequences and en-
codes additional information about the DNA sequences that are criti-
cal for an analyst. This system is the first to flexibly incorporate a wide
range of annotations, allowing users to see how a region of interest dis-
tributes over the assembly structure. While our tool, ABySS-Explorer,
was built to navigate assemblies produced by our in-house assembly
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algorithm, ABySS (Assembly By Short Sequences) [24], the visual
encoding introduced here has the potential to generalize to other DNA
sequence display problems.

Our visualization has been adopted by a number of genome analysts
and subjected to iterative design based on their feedback. We discuss
details of these design refinements, together with descriptions of how
our visualization tool was used in different analysis tasks. This tool
represents a significant contribution as it replaces laborious manual
data-integration. Through discussions with users, we have identified
additional applications not considered in our initial design process,
highlighting the generality of our visual encoding of DNA sequences.

(b)

5 -AAAAAAAAAAAAA GGCAGACTA
CATA

ACT-3

5 -AAAAAAAAAAAAACGTTTAAGCATGTGGC-3

(a)

AAAAAAAAAAAAA-3

5 -T
CATTCTGAGGCTCTAAAAAAAAAAAAA-3

5 -AGAGATACAAGAAGC

Fig. 2. Example of a path ambiguity in an genome assembly resulting
from a repetitive A-rich sequence shown as DNA sequences (a) and as
an arrow diagram (b).

2 ASSEMBLING A GENOME

The raw output of a genome sequencing pipeline is a collection of
short sequencing reads. One of the core operations of a de novo
genome assembly algorithm is to find overlaps between reads. Se-
quencing technology has undergone a revolution in recent years and
next-generation techniques produce much shorter reads (25-100 nt
compared to 500-1000 nt), however they can produce several orders
of magnitude more data for the same cost. A single sequencing re-
action currently produces millions of short reads. Standard overlap
search algorithms are not optimized for this very large number of
short sequences, and thus a new generation of assembly algorithms
has emerged.

Our in-house assembly algorithm, ABySS [24], addresses the over-
lap search problem by representing DNA sequences as a de Bruijn
graph, a notion pioneered by Pevzner et al. [21] and employed in other
recently published genome assembly tools [4, 25, 6]. A de Bruijn
graph is a directed graph that compactly represents a uniform over-
lap between sequences. All possible sub-strings of length k (termed
k-mers) are generated from the sequencing reads. A vertex is cre-
ated for each k-mer and edges join vertices when they overlap by k-1
nucleotides. The assembly process consists of merging vertices that
are unambiguously connected, and this computation can be distributed
over a cluster of computer nodes. The resulting merged sequences are
called contigs.

A shotgun sequencing experiment may produce many reads through
a given nucleotide. Read coverage is defined as the average number
of reads supporting a particular nucleotide at a given position in the
assembly. Sequencing errors occur at a low rate (typically <1 error in
100 nucleotides using the Illumina Genome Analyzer platform). Qual-
ity of the assembled sequence correlates with read coverage, as it is
very unlikely that the same error will be observed multiple times at a
given position. Thus the read coverage is computed for each contig in
an assembly and constitutes a valuable metric during analysis.

Read pairing information offers additional information about an as-
sembly. In a popular shotgun sequencing protocol, DNA molecules
are extracted from cells and sheared into small fragments (roughly 200
nt). Each end of a given fragment is then used as a template to pro-
duce short sequencing reads. The pairing information between reads
from either side of a given DNA fragment can be recorded. After con-
tigs are assembled, the ABySS algorithm has a second phase which
aligns pairs of sequencing reads to the contigs. The distance between
each aligned read pair is recorded for cases where both reads match
an existing contig, and these distances yield an estimate of the true
fragment size distribution. Paired reads are particularly valuable when
they align to different contigs as they can be used to infer the correct
contig orderings and estimate inter-contig distances.

3 RELATED WORK

This work was motivated by the lack of adequate visualization tools
for analyses of global genome assembly structure for new sequenc-
ing platforms. There are several powerful tools that provide local de-
tailed views of read sequences and their alignments within contigs,
such as Consed [9] and gap4 [3], however these tools provide no vi-
sual overview of an assembly as a whole. Phrapview [9], a companion
tool to Consed, was among the earliest tools for examining contig con-
nectivity, and it displays contigs in a parallel coordinates view. Con-
nections between contigs, such as those supported by paired reads,
are represented as connecting diagonal lines and color is used to dis-
ambiguate connections of different types. As with any parallel coor-
dinates scheme, this view can become difficult to interpret when the
number of connections is large. Even with relatively sparse data, it is
challenging to visually follow the path through multiple parallel con-
tigs and spot high-level structures such as cycles.

Hawkeye [22] provides an abstract overview of contigs as a collec-
tion of appropriately sized horizontal lines ordered along the x-axis.
Details of paired read placement within a selected region are available
in a linked view, and pairs are color coded to flag common assembly
errors. This representation is powerful for some analysis tasks, such
as recognizing read pairs separated by statistically extreme distances.
However, visually tracing a path through a set of densely connected
linearly ordered contigs can be difficult and connections to contigs in
distant regions of the ordering are hard to identify.

ConPath [19] is the only visualization tool to our knowledge that
displays contig connections as a graph. It arranges contigs, repre-
sented as vertices, using a grid layout with unambiguously ordered
contigs arranged on the same row. Edges indicate ambiguous con-
nections between contigs on different rows. The edges are forced to
follow a grid making them very hard to distinguish, and neither vertex
placement nor edge length provides an accurate representation of dis-
tance in the assembled sequence. ConPath generates non-interactive
graphics that can be difficult to interpret when the number of ambigu-
ous edges is large.

All existing assembly tools have very limited capability when it
comes to displaying meta-data, such as gene annotations. Popular
genome browsers, such as UCSC [18] and Ensembl [15], use a set
of parallel horizontal tracks, one for each annotation type, that share
a common genomic x-coordinate. However, all of these tools function
on a reference genome sequence and are not designed to accommodate
the connectivity information inherent in a de novo genome assembly.
Neither Phrapview nor ConPath enable annotation display. Hawkeye,
and a more recent tool EagleView [14], incorporate annotation tracks
in parallel to the contig display, much like a genome browser. While
useful on a local scale, these views fail to provide an easy to interpret

882 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2009

Authorized licensed use limited to: University of Wisconsin. Downloaded on November 3, 2009 at 11:53 from IEEE Xplore.  Restrictions apply. 



context for how the contigs connect to each other.

Discussions with genome analysts reveal that judgements about as-
sembly errors are tackled one at a time using local information, and
while they have metrics to guide them to the problematic regions in the
assembly, they have no overview of the global problem. In addition,
there is no way to easily examine the interconnections between con-
tigs together with meta-data such as annotations. This paper addresses
these problems with a visual encoding that emphasizes the connec-
tivity information while integrating important data features into the
representation which allows a global view of the assembly.

4 DESIGN DECISIONS

Genome analysts require several types of information when examining
a sequence assembly. These include: (1) information about which con-
tigs overlap with each other, (2) contig orientation, (3) contig length,
(4) contig sequence coverage, (5) paired read positions with distance
estimates, (6) additional meta-data not used in the assembly such as
gene annotations. Most of these data types are stored in distinct files
with different file formats and no visualization tools exist to integrate
all of them. We designed a visual encoding that captures all of these
features in a single representation with the intent to eliminate the need
for laborious cross-referencing between data sources. Inspired by the
guidelines of Shneiderman [23], we built an interactive interface that
provides an initial overview of the data set, while enabling subsequent
focusing on regions of interest and access to details on demand.

4.1 Contig Connectivity as Graphs

Graphs are good representations for displaying connectivity, however
they are frequently misused in cases where the data structure is not
the most interesting feature [8]. In our domain, one of the goals of
an analyst is to decipher the structure of an assembled region and to
disambiguate the paths between contigs. For complex structures, we
found that analysts would frequently draw the corresponding graph
of contig connections by hand in order to reason about the assembly
structure. Given these observations, a graph is a very natural encoding.

As described in section 2, the ABySS algorithm uses a de Bruijn
graph as an internal representation of sequence overlaps. This ap-
proach is not unique to ABySS [4, 25, 6]. Although some groups
present static graphs of real genome assembly data for publication pur-
poses [5], no interactive analysis tools exist for this data type. We ini-
tially applied the de Bruijn graph representation to our first design of
an interactive assembly viewer. While the de Bruijn representation is
well suited for the computation performed by the assembly algorithm,
we quickly realized that this encoding is not optimal for visually rea-
soning about sequence space.

The ABySS assembly algorithm represents each contig as a vertex
and uses edges to indicate an overlap of k−1 nt between two contigs.
As shown in Figure 3, no strong visual correspondence exists between
the de Bruijn graph representation (3a) and the true sequence space
(3b). For example, the de Bruijn graph captures an overlap between
the terminal end of contig 1 and the start of contig 4 with an edge.
However, contig overlaps at start positions (e.g. between contigs 2
and 4) or at terminal ends (e.g. between contigs 1 and 3) are not as
immediately obvious.

To obtain a representation that more directly maps onto sequence
space, we inverted the graph encoding and represent contigs as edges
and vertices as points of contig overlap. This change resulted in
very positive feedback from analysts, and we argue that these revised
graphs enable analysts to reason about the graph in a similar way to
how they would reason about sequences. For example, in Figure 3c,
it becomes easy to see that the source of the assembly ambiguity is a
k−1 nt sequence shared by all four contigs.

We initialize a global overview of the graph in ABySS-Explorer
using the Kamada-Kawai force directed graph layout algorithm [17]
(see Section 5). Our interface supports interactive manipulations of
the graph view such as translation, rotation, and zoom. The iterative
layout algorithm that can be paused at any point and all vertices can
be repositioned by hand if desired.
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3
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2

4

3

(a)

(b)

(c)

Fig. 3. Different representations of sequence contigs labelled 1-4. (a)
Internal de Bruijn graph representation used by the ABySS assembly
algorithm where contigs are represented as vertices and edges indicate
a k-1 nt overlap. (b) Arrow diagram of the corresponding sequences.
(c) Graph representation used by ABySS-Explorer where contigs are
represented as edges and vertices indicate a k−1 nt overlap.

4.2 DNA is Double-Stranded

At this point our graph representation captures a contig sequence as
a single directed edge. However, DNA is doubled stranded. The
two DNA molecules (strands) are oriented in opposite directions (anti-
parallel) and they are complementary (an A nucleotide in one corre-
sponds to a T in the other, and a C nucleotide in one corresponds to a
G in the other, and vice versa). We arbitrarily label the two strands “+”
and “-”. As they carry the same information content, we choose one
as the reference strand. Sequencing generates reads from both DNA
strands, however we do not know which strand a read originates from
a priori. In order to resolve the reference strand sequence, analysts
require the ability to reverse complement any given contig.

One option for capturing the double-stranded nature of DNA is to
ensure that the graph represents both a k-mer and its reverse com-
plement as distinct vertices. The process of reverse-complementing
a sequence then corresponds to reconnecting a contig edge to the ap-
propriate vertex. However, this representation has unnecessary redun-
dancy in that a given DNA sequence is encoded as two vertices, one
for each strand. Controlling the layout of k-mer pairs also becomes
cumbersome.

Instead, we make each vertex polar such that one pole corresponds
to a given k-mer and the other pole represents its reverse-complement.
The pole assignment is arbitrary, but once assigned, it is consistent for
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5'-AAAAATGCCAGTAAGACTGACGGGGGG-3'
5'-CTCTCTCTTCCAGTAAGACTGCGAAAAAT-3'

3'-TTTTTACGGTCATTCTGACTGCCCCCC-5'

5'-CTCTCTCTTCCAGTAAGACTGCGAAAAAT-3'

1+

1+

2+

2-

3'-TTTTTACGGTCATTCTGACTGCCCCCC-5'

1- 2-

3'-TCTCTCGAAGGTCATTCTGACGCTTTTTA-5'

Fig. 4. Example of vertex polarity using an overlap size of 6 nt. Both
graph and sequence representations are shown. When a contig edge is
reverse-complemented, its orientation, labelled strand, and vertex pole
connections are inverted.

all edges. Figure 4 illustrates this encoding. The two example contigs,
“1+” and “2+”, share an “AAAAAT” sequence and therefore connect
to the same vertex pole (upper panel). When contig “2+” is reverse
complemented into “2-” (middle panel), it now has the reverse ori-
entation with the complementary “TTTTTA” sequence at its terminal
end and therefore connects to the opposite vertex pole. If contig “1+”
is subsequently reverse complemented into “1-”, it too now terminates
in“TTTTTA” and both edges connect to the lower vertex pole (lower
panel).

We mapped this reverse-complementation onto a simple interaction
to enable the user to intuitively manipulate contig orientation. Double
clicking a contig edge reverses its direction, switches the polarity of its
vertex connections. and changes the sign of its label. This operation,
together with being able to freely move vertices, also helps users to
clearly see the polarity of an edge connection which can sometimes be
obscured in the automated force-directed layout.

This representation maintains the overall ease of interpreting se-
quence overlaps, however, it does introduce a subtlety with regards to
possible paths. Two edges form a valid path through a vertex only
if they share the same pole when oriented in the same direction. For
example, Figure 4 shows valid paths from contigs “1+” to “2+” and
similarly from contigs “2-” to “1-”. We found this rule to be intu-
itive to biologists as it captures a fundamental property of how DNA
sequence is read.

4.3 Contig Length
Many analysis tasks require information about contig length. Typi-
cally, only low-resolution judgements are needed such as classifying
a contig as relatively long or short. One option for representing con-
tig length is to scale the edge lengths corresponding to their sequence
lengths, however there are several draw-backs to this approach. First,
the layout problem may become intractable as a 2D space may not
be able to satisfy all of the distance constraints. Second, even if a
layout was resolved, very short adjacent contigs would pack together

and become hard to distinguish. Many assembly ambiguities result
from short contigs, so it is essential that the visualization display them
clearly.

A wave representation for the contig edges solves these problems.
Each oscillation corresponds to a fixed number of nucleotides as de-
fined by the user. Long contigs produce short wavelengths while short
contigs result in longer wavelengths (Figure 5). Simple arcs represent
contig sequences with below threshold lengths. To ensure that the con-
nections between edges and vertices remain clearly visible and are not
overpowered by the wave, we adjust the amplitude along the sequence
length setting the minimum amplitude at the connection points. We
also use a darker color to distinguish vertices from edges.

Initially, we placed the maximum amplitude at the edge midpoint.
In cases of very small wavelengths, we noticed that the edge arrow-
head was no longer readily visible, as it tended to blend with the edge’s
solid shape. An interpolated color gradient, such as from green to red,
has been used to to indicate edge direction [12], however in our case
we wished to reserve color as much as possible to encode meta-data
(see Section 4.6). Other techniques for drawing directed edges include
half-lines where only the first half of a edge is drawn [2] or using cur-
vature to indicate direction [7], but neither method is compatible with
our use of polar vertices or edge length. We decided to encode con-
tig orientation into the shape itself by forcing the maximum amplitude
to occur closer to the contig start. The resulting leaf-like shapes are
asymmetric across an edge’s length and thus capture the orientation
of the contig sequence. The effectiveness of varying the width of an
edge along its length (i.e. wide at the start and narrow at the end) was
demonstrated in recent user studies of visualizing directed edges in
graphs [13].

Fig. 5. Contigs of different sizes appear as distinct shapes. In this graph,
one oscillation corresponds to 100 nt such that smaller contigs appear
as waves (e.g. contig “36+” = 3,000 nt) and larger contigs become solid
shapes (e.g. contig “28+” = 11,700 nt).

4.4 Contig Coverage
Coverage serves as a valuable metric in many types of analysis. For
example, spurious sequencing errors give rise to very low coverage
contigs. In contrast, long repetitive elements produce indistinguish-
able reads along their length which collapse into very high coverage
contigs during the assembly process. Extreme coverage values are
good indicators of errors or ambiguities and should be easily accessi-
ble within an analysis tool.

Color lightness is a natural choice for ranking coverage values such
that densely covered contigs appear dark and poorly covered contigs
look pale. However, our contig edges already range in their line den-
sity due to their different lengths, so judging a gradation of lightness on
such variable shapes would be nearly impossible. We also want com-
parisons between coverage values to be robust independent of color
choice. Given that perceived lightness varies with hue, this is not the
strongest choice.
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We employ line thickness to indicate coverage as it provides an in-
tuitive mapping (more reads piled up results in a thicker line). Four
distinct line thicknesses encode four coverage ranges derived using
the coverage mean and standard deviation. There is however a trade-
off with contig length, as very long contigs may appear as solid shapes
and thus the line thickness is obscured. Given that the wavelength
along edges is adjustable, we feel that this is an adequate compromise.
A user can tune the oscillation frequency such that edge thickness can
be made visible for the contig size range of interest. The resulting ef-
fect is that contig length and coverage resolve together by permuting
a single parameter.

4.5 Read Pair Information
The ABySS assembly algorithm aligns read pairs to contigs and
records this mapping information together with a distance estimate
and the orientation for the connection (Figure 6a). The most natu-
ral representation for these linking read pairs in the graph consists of
a directed edge with a length corresponding to the distance estimate.
We use the same length encoding as for contigs, but distinguish link-
ing edges from contig edges through color and the use of a dashed line
to give a sense of their virtual distance (these linking edges do not cor-
respond to observed sequences, but rather to inferred inter-sequence
distances).

...TCGATGTAGCAGGACCGTAAAAAA AAAAAACGTGGCCAGGTAGCATCATG...
5'-GCAGGACCGT-3' 5'-TGGCCAGGTA-3'

contig 8+ contig 38+

(a)

(b)

(c)

(d)

38+

38+

38+

51+

51+

51+

8+

8+

8+

24-

24-

24-

Fig. 6. (a) A read pair (short black sequences) connects contigs “8+”
and “38+” (longer blue sequences) and the orientation is captured by a
link edge (dashed blue line). (b) In the graph representation, the two
contigs involved in the link are colored blue (“8+” and “38+”) and are
connected by a dashed blue line with the correct orientation and vertex
polarities. (c) A similar link occurs between contigs “24-” and “51+”.
(d) The inferred path through these contigs based on the unambiguous
read pair information in (b) and (c) is highlighted in dark gray.

One consideration is how to represent the terminal contigs in which
the paired reads align. Initially, we simply colored the vertices con-
nected by the new linking edge. This proved problematic because

many contig edges may connect to the same vertex and the contigs
containing the read pair remain ambiguous. Instead, we now color
the corresponding contig edges to match the linking edge (Figure 6b).
If many linking edges for different contigs are displayed simultane-
ously, the pairing may be difficult to resolve. However we feel this is
a reasonable limitation as the linking edges are by default not shown
and are only displayed for the selected contig edge. The user can thus
easily explore the relations interactively and can control how much
information is viewed at one time.

Read pair information is also used by ABySS to piece together paths
through the graph. The presence of a read pair provides additional ev-
idence that two contigs indeed connect and are not adjacent in the
graph as a result of a spurious sequence overlap. For example, Fig-
ure 6b shows evidence that contig “8+” is followed by contig “38+”.
Similarly, Figure 6c supports a connection between contigs “24-” and
“51+”. ABySS will use these unambiguous links to infer a path from
contig “24-” to “8+” to “51+” to “38+”. We highlight such paths using
a user defined color (dark gray in Figure 6d). Because path color can
obscure the coloring resulting from link edges, we encourage users to
only view one of these information types at a time in the interactive
ABySS-Explorer.

4.6 Displaying Meta-Data
Color offers an effective way to encode nominal data [20], therefore
throughout our design phase, we reserved color as much as possible
for displaying meta-data such as categorical annotations. This pro-
vides a clean separation between the structural features of an assem-
bly encoded in the forms of the graph’s edges and vertices, and the
external meta-data not used in the assembly process. Such separation
provides a flexible way to explore diverse meta-data within the struc-
tural context of an assembly. Section 6.2 describes how we exploited
this encoding in studying large-scale genomic rearrangement events in
human cancer.

5 IMPLEMENTATION OF ABYSS-EXPLORER

Our assembly visualization tool, ABySS-Explorer, was designed with
our in-house assembly algorithm (ABySS) in mind, however the de-
tails of our implementation and flexibility of our data encoding enable
more general use.

ABySS-Explorer is an interactive system implemented in Java 1.5.0
using the Java Universal Network/Graph Framework, JUNG [16].
This provides us with a well-developed framework that could be eas-
ily extended. We use the JUNG implementation of the Kamada-Kawai
algorithm for vertex layout [17] and obtained a satisfactory response
time on a desktop PC using graphs containing a few hundred vertices.
Contig length is only used to render the contig edges and does not
influence the graph layout. ABySS-Explorer runs on DOT formatted
input files, consistent with widely used graph visualization software
like Graphviz [10]. All input data, such as the contig adjacency in-
formation and contig lengths, are stored as DOT files and are parsed
with a general DOT parser written using the ANTLR framework [1].
ColorBrewer [11] guided our choice of colors throughout.

6 APPLICATIONS

We applied ABySS-Explorer to a number of ongoing analysis projects
at the BC Cancer Agency Genome Sciences Centre. The first tackles
the challenges of identifying and resolving structural features within
an assembly, and the second explores the flexibility of our tool in in-
tegrating meta-data into the assembly context. We conclude with a
brief discussion of new application ideas inspired by our initial user
experiences.

6.1 Visualizing Assembly Structure
One of the primary motivations for developing ABySS-Explorer was
to facilitate the analysis of assembly structure. Figure 7 shows a visu-
alization of over 200,000 nucleotides of a human genome produced by
assembling over nine million sequencing reads. This image gives the
user an immediate impression of assembly quality not possible with
any existing tool. For example, an ideal assembly would be composed
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of a single large contig, however, we can see that there are many small
contigs remaining in this assembly and that these short contigs often
overlap with several larger ones causing ambiguities. A particularly
problematic region composed of many short contigs (top right) can be
quickly identified. By clicking on different parts of the graph, the user
discovers the paths that are unambiguous based on read pairings, such
as the one highlighted in dark gray. Not only does it become clear that
there is no path that traverses a substantial portion of the graph, but it
is easy to inspect the structural ambiguities where the paths terminate.

Fig. 7. ABySS-Explorer view of over 200,000 nt of human genome se-
quence.

ABySS-Explorer is particularly useful for identifying structural pat-
terns in an assembled sequence. For example, Figure 8 show a con-
nected set of contigs that form a loop. This cycle is composed of six
contigs which together have connections to another six contigs branch-
ing off of the loop. Tracing a path such as this one is very difficult
using a linear contig display such as Phrapview or Hawkeye, and an-
alysts may resort to drawing graphs by hand to represent the connec-
tions. Using our tool, these structures are immediately obvious.

In addition to highlighting structure, ABySS-Explorer integrates
different data types used by analysts. For example, Figure 9a shows a
structure with two possible paths: either “24+”, “33-”, “16-” or “24+”,
“48+”, “16-”. The encoding of coverage data as edge thickness allows
the analyst to quickly recognize that lower contig, “48-”, has lower
coverage than any of the other three, which is a common indicator of
a sequence error or variant. These connections could simply be a re-
sult of spurious overlaps within the assembly, however, an analyst can
rule out that possibility by interactively selecting either of the larger
flanking contigs and observe that their connection is in fact supported
by a spanning read pair highlighted in blue (Figure 9b). Imposing cov-
erage and paired read information onto a structural representation of
the contig paths in an interactive fashion greatly facilitates this kind of
analysis and is not possible with any other tool.

Next-generation sequencing technologies and complementary as-
sembly algorithms, such as ABySS, are still in the development stages.
ABySS-Explorer’s ability to display structural information has been
valuable to our algorithm designers in allowing them to readily see
the consequences of parameter changes. For example, short terminal
contigs frequently reflect sequencing errors which tend to be more fre-
quent at read ends. ABySS has a trimming phase where such contigs
below some threshold size are removed. ABySS-Explorer has proven

to be a useful way to examine which contigs are removed and to judge
whether their removal improved the overall assembly. Similarly, glar-
ing assembly errors can be examined to identify weak points in the
assembly algorithm and inspire ideas for improvement.

Fig. 8. Detail of an assembled contig cycle.

(b)

33-

48-

33-

48-

(a)

Fig. 9. Detail of an ambiguous path (a) resolved by paired read informa-
tion (b).

6.2 Adding Annotations
While developing ABySS-Explorer and discussing early prototypes
with genome scientists, it became clear that this tool could be valu-
able for viewing meta-data within the structural context of an assem-
bly. To explore this idea in more detail, we applied our visualization
to assembled genome regions from human lymphoma samples iden-
tified as containing large-scale genomic rearrangements. The identi-
fication of cancer-associated aberrations, particularly for immune cell
cancers such as lymphoma, is an ongoing effort. In the final in-house
validation stage, contigs of the affected genomic regions assembled
by ABySS are aligned to the reference human genome. Biologists
working with these data are interested to know (1) whether the align-
ment annotations agree with the contig order in the assembly, and (2)
whether contigs that map ambiguously using genome alignment can
be placed using the assembly.

The upper panels in Figure 10 indicate how we use color to an-
notate different regions previously discovered to be involved in a ge-
nomic inversion event. Our color scheme reflects the order and ori-
entation of sequences in the reference genome (panel a). Blue and
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inversion event in a human lymphoma genome

reference human genome(a)

(b)

(c)

Fig. 10. (a) color scheme annotates roughly 1,000,000 nt of the refer-
ence human genome. (b) Same annotations as in (a) indicate a global
inversion event in the corresponding region of a lymphoma genome. (c)
ABySS-Explorer view of roughly 200,000 nt assembled from the human
lymphoma genome region depicted in (b).

orange highlight the two regions of interest and a color gradient in-
dicates distance along the reference sequence. Black boxes mark the
end of each region. When we apply these annotations to a lymphoma
genome sequence (panel b), we can see that the orange colored region
is inverted relative to the reference, creating a novel junction sequence
(black box). The graph (panel c) captures an ABySS-Explorer view
of the corresponding assembled lymphoma genome region where con-
tigs are colored according to where they align in the reference genome.
Contigs with ambiguous genome alignments are left gray.

By imposing these contig alignment annotations onto the assembly
structure, we clarify where the assembly order and the alignment or-
der agree. For example, the strings of uninterrupted orange or blue
contigs at the bottom of the graph indicate agreement. Inconsisten-
cies are immediately apparent as interconnections between different
colored contigs, such as in the center of the graph. It is interesting to
note that many of these connection points are made of short contigs,
suggesting that repetitive elements or sequence errors are the cause of
such ambiguities.

The inversion breakpoint itself is resolved quite clearly, with the

black breakpoint contig flanked by a string of blue contigs on one
side and orange contigs on the other (Figure 11). The adjacency of
dark orange and blue contigs highlights the nature of the inversion
event (compare Figure 10b). Closer inspection of this region reveals
a lighter blue contig close to the breakpoint, highlighting an inconsis-
tency between the alignment order (represented by the color gradient)
and the assembled order. An analyst must now decide which ordering
is correct. Is there an error in the map of the inversion event (Fig-
ure 10b) which was deduced using other experimental methods, or is
there a mis-assembly? Interactive exploration of the paired read infor-
mation (Figure 12) reveals that the large suspect contig, now colored
dark gray, connects only to smaller contigs mapping to regions fur-
ther from breakpoint. Because the read pair information supports the
alignment order, we suspect a spurious mis-assembly. Interactive data
exploration greatly facilitates this kind of analysis.

The detailed view of the breakpoint region (Figure 11) also offers
a guide as to where small ambiguously aligned contigs (gray) should
be placed. Again, paired read information can be used to make judge-
ments about which contigs belong and which ones may be spurious
alignments. Our visualization replaces a time-consuming procedure
of inspecting the connectivity between contig pairs in a linear layout
viewer such as Consed [9].

Overall, the flexibility of our system to incorporate meta-data such
as annotations is very useful for analysts who want to extract biologi-
cally meaningful components of an assembly. Given the rapid rate at
which the raw data can be generated and assembled and the compara-
tively slow pace at which the final ambiguities are manually resolved,
our visualization enables biologist to make better use of assembly data
as it becomes available.

Fig. 11. Detail of the inversion breakpoint in a human lymphoma
genome.

6.3 Generality of our Visual Encoding
Our initial applications of ABySS-Explorer sparked several ideas for
future use, some of which differ significantly from our initial tar-
get problem. For example, sequencing technology is not limited to
genomes. The genome contains many regions called genes that are
transcribed to produce unstable RNA intermediates called transcripts.
Many of these transcripts translate into proteins which have a vast ar-
ray of functions in cells. The collection of RNA transcripts has been
coined the transcriptome and can be sequenced in a high-throughput
fashion just like a genome.

We are currently experimenting with using the ABySS assembly
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Fig. 12. Paired read information supports the annotated contig ordering.

algorithm to assemble human transcriptomes. Because we sequence
thousands of transcripts instead of a handful of chromosomes, the re-
sulting assembly is highly fragmented. Features such as coverage and
assembly structure take on new meaning in this context. For exam-
ple, sequence coverage is highly informative about expression level,
and assembly structure can reveal alternatively spliced transcripts. Al-
though this work is ongoing, the initial ease with which we have been
able to apply ABySS-Explorer to this new problem domain exempli-
fies the generality of our visual encoding of sequence data.

7 CONCLUSIONS AND FUTURE WORK

In this paper we explored the use of a graph as a novel encoding for
genomic sequence data and experimented with how to map properties
of DNA onto the forms of graph vertices and edges. Through two case
studies, we demonstrated the utility of our sequence representation in
tackling distinct analysis problems, both of which previously required
manual data integration due to a lack of appropriate tools. Reserving
color for meta-data display results in great flexibility to explore the
distribution of diverse data types over the assembled sequence. The
unified encoding presented here is readily applicable to other biologi-
cal domains, such as transcriptome analysis.

All of the case studies presented here focus on a sub-region of the
human genome constructed from hundreds of contigs which corre-
spond to hundreds of thousands of nucleotides. However, an assembly
of a full length human genome corresponds to roughly 3 billion nu-
cleotides and typically assembles into millions of contigs. This scal-
ing problem poses significant challenges in both how to navigate the
detailed view and how to provide a meaningful overview. Future work
in this direction can build on previous graph visualization research in
other application areas while using the novel data encoding presented
here.

In addition to the scale problem, there is interest from analysts to
enable assembly editing as is available from most popular genome as-
sembly tools. This introduces the notion of graph history and opens
up interesting design problems of how to explore changes in graph
structure over time. Methods to animate the untangling of a genome
assembly over iterations of new data incorporation and manual ed-
its are likely to result in insights into the strengths and weakness of
our current genome editing strategies. We believe that graph-based
visualizations of assemblies will have even more benefits than those
discussed here when applied to histories of changing assemblies, es-
pecially when compared to the current text based reporting methods.
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